

California Lutheran UNIVERSITY

RARITAN VALLEY

University of Minnesota ROCHESTER

Kimberly Linenberger Cortes¹, Henry V. Jakubowski², Melanie Lenahan³, David Marcey⁴, Patricia Marsteller⁴, Cassidy R. Terrell⁵, Shuchismita Dutta⁶

¹Kennesaw State University, Kennesaw, Georgia, GA, ²College of St. Benedict/St. John's University, St. Joseph, MN, ³Raritan Valley Community College, North Branch, NJ, ⁴California Lutheran University, Thousand Oaks, CA, ⁵Emory University, Atlanta, GA, ⁶University of Minnesota, Rochester, MN, ⁷The State University of New Jersey, Rutgers, MN

Saint Benedict 🖶 Saint John's

Objectives of Molecular CaseNet

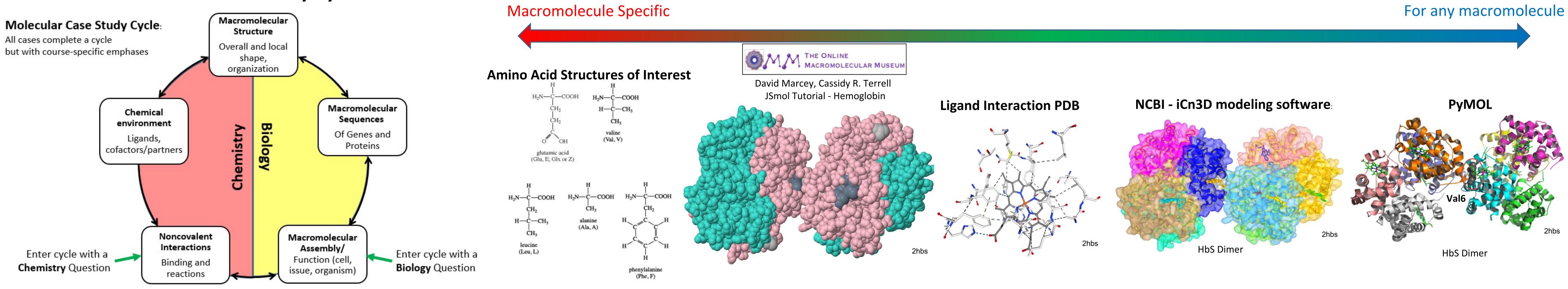
- . Assess needs/interests: Use of biomolecular structures in teaching biology/chemistry by identifying/recruiting community members;
- 2. Analyze challenges/develop solutions: Use of biomolecular structures for teaching biology/chemistry by recruiting interested educators to build the BioEd3D CoP
- 3. Organize resources/standards: Help and recruit educators to join the BioEd3D CoP and use biomolecular structures in teaching

Conceptual Frameworks

Vision & Change

• Structure and function Systems

ASBMB: Macromolecule Structure/Function

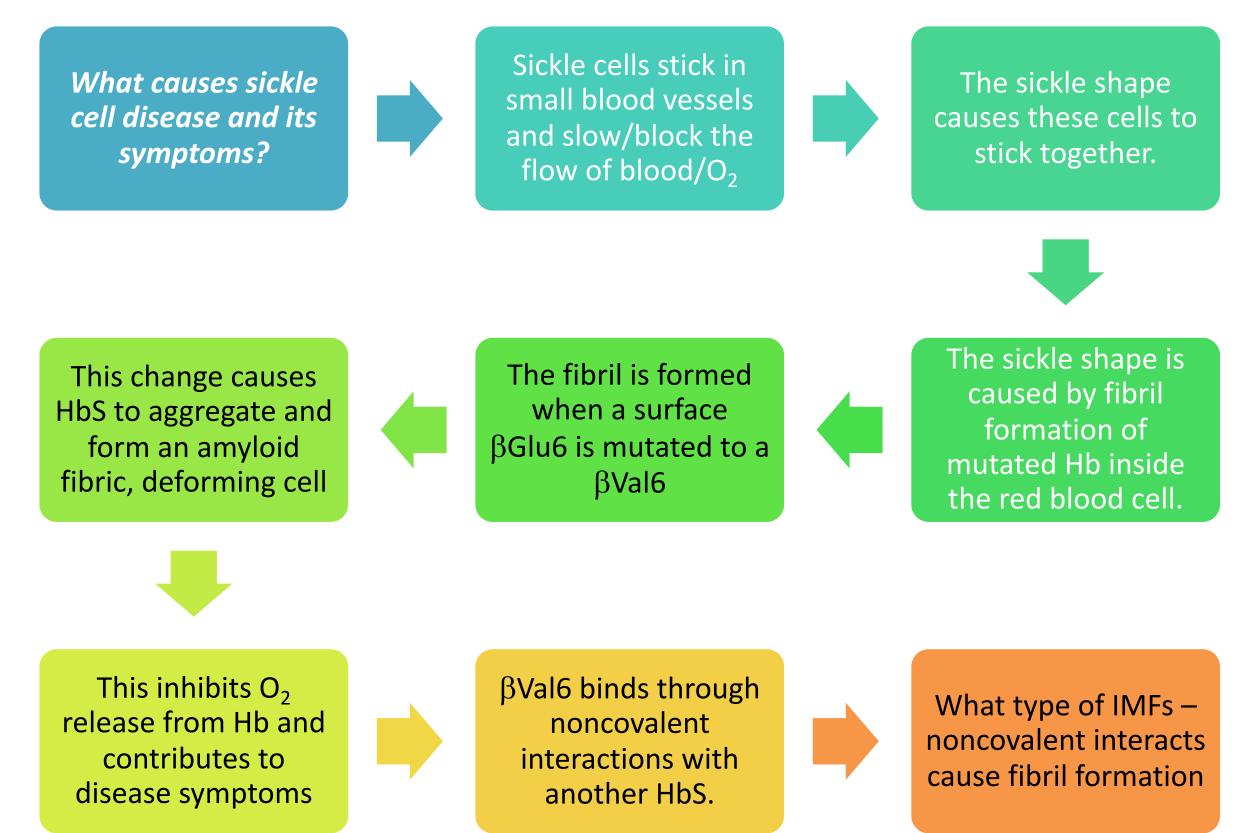

- Structure and function are related
- Macromolecular interactions
- Macromolecular structure/activity is dynamic and regulated
- Chemistry and physics determines structure/function

Next Gen Science Standards (NGSS) – 3D Learning

- Patterns
- Systems and system models

• Stability and change

- Cause and effect
- Structure and function
 - Molecular Case Study Cycle

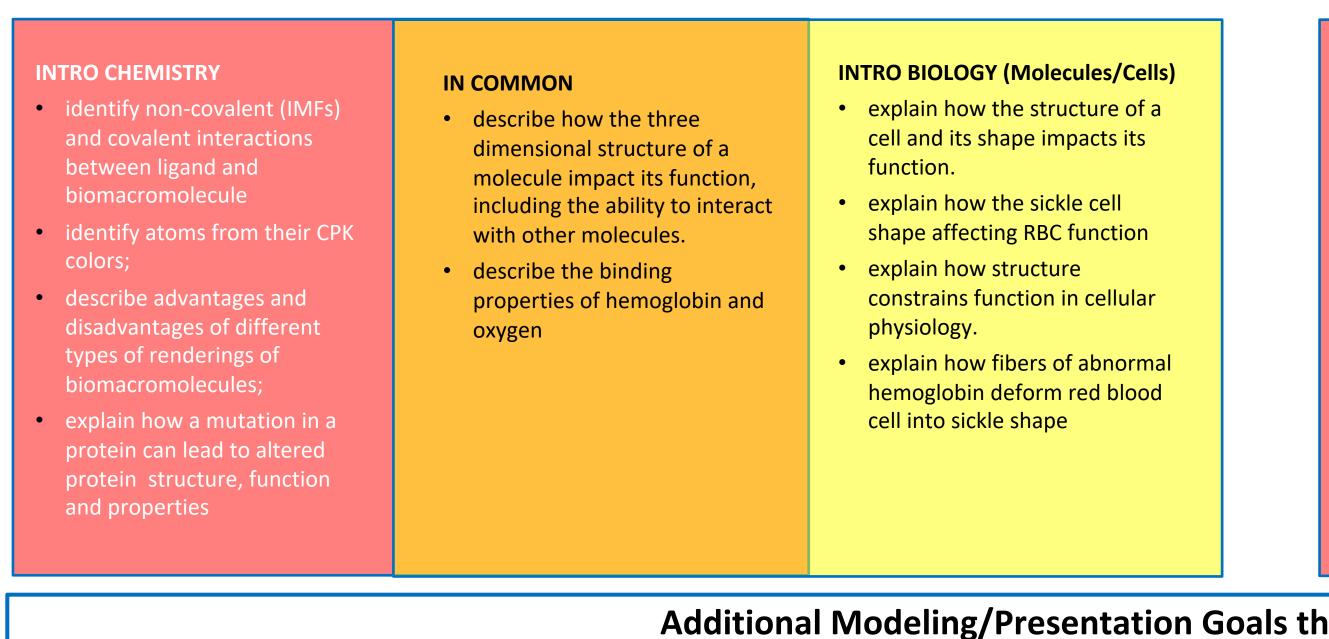


Our 1st Molecular Case Story: Sickle Cell Hemoglobin

A topic that ...

- was compelling and emotionally connecting;
- was relevant/interesting to educators/students in biology and chemistry;
- could lead to a clear understanding of structure/function relationships.

A storyboard to link sickle cell disease with introductory chemistry:



RUTGERS KENNESAW STATE Molecular CaseNet: Developing case studies using molecular representations for use in introductory chemistry, biology and biochemistry classes

Our 1st Case Study – Implementation in Chemistry Courses

Student Learning Objectives

Introductory Chem/Bio Learning goals: Students will be able to ...

Basic

- use online interactive web tutorials to display and understand structural features of biomacromolecules, ligands, and their interactions;
- display different renderings of molecules and proteins using web-based molecular modeling programs, given instructions for their use;
- optimally orient molecules to display key feature of structure and function using web-based modeling programs; • orient 3D printed models of proteins with computer models of the same protein structure
- use PPTX and screen capture to create/complete assignments focusing on structure/function Advanced
- Use specific programs (Jsmol, Chimera, Pymol, etc.), through the command line and/or GUI, to open/render biomolecules to explain structure/function

Minimal modeling skills Maximal guidance

Modeling PDB Hemoglobin Structures

Sickle Cell Hemoglobin (HbS): Beta-tested Classroom Experiences

General Chemistry I

- 48 students at Kennesaw State University
- Goal: Provide biological context for IMF
- 20 min of a 50 min class to show application of IMF
- Used first 2 minutes of video to introduce context.
- Instructor used OMM model as demonstration to highlight important aspects. Drew Lewis structures of amino acids on board to have students predict
- interactions.
- Used OMM to compare their predictions using the Lewis structures to what happens in the protein.

Intro to Chemical Structure and Properties

- 23 students at College of St. Benedict-St. John's University
- Goal: Understanding IMFs in a biological/medical setting
- Pre-class group assignment in flipped classroom activity where students video along with 2 videos describing sickle cell
- Each group is assigned a different PDB ID to investigate different aspects ligand binding interactions.
- Students model using: Ligand PDB (heme); NCBI iCn3D for HbS dimer
- Students present their portion of the Hb story to create a class story of
- Class concludes with a discussion of how structure of Hb impacts functio form of sickle cell.

Biochemistry/Advanced Biology Learning goals: Students will be able to ...

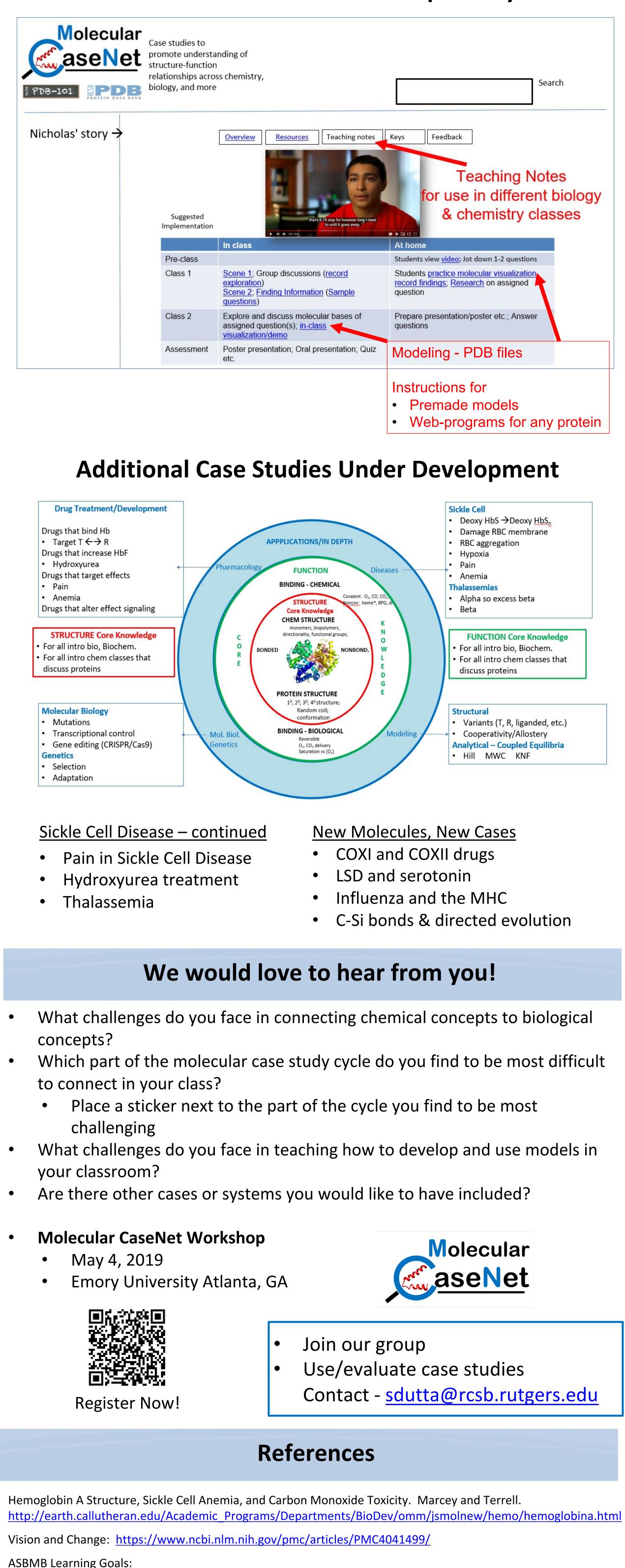
 states of Hb and their respective binding properties; describe cooperative binding and how different allosteric effectors and ligands affect the equilibria between T and R states of hemoglobin; Describe and use different mathematical models (Hill, MWC, KNF) that account for cooperative binding of ligand and relate them to structural changes in hemoglobin 	 (HbA) hemoglobin,, and the role of hemes in binding oxygen (Level 1) explain the cooperative binding and release of O₂ by tetrameric HbA (Level 2) Correlate binding of O₂, CO₂ and NO to hemoglobin with graphs of fractional saturation vs pO2; describe different allosteric effectors of O2 binding to hemoglobin and how they regulate Hb structure and O₂ binding properties; 	 between HbA beta globin and HbS beta globin and the genetic cause (basis) of this difference (Level 1) explain why the HbS mutation causes tetrameric polymerization (Level 1) explain how HbS polymerization elicits sickle cell disease pathologies obtain information on the molecular basis of possible treatments for sickle cell disease
--	--	---

Maximum modeling skills GUI/command line

<u>A compelling and emotionally-charged story that links structure/function</u>

https://www.youtube.com/watch?v=iKQmQHh4E2w

Biochemistry (1 semester survey)


s watched	 72 students at Kennesaw State University
	 Goal: Structure impacts function of Hb ligand binding
ts of Hb-	 Pre-class videos and quiz in flipped classroom format
	 2 class periods used OMM to explore HbA structure and HbS structure
Hb	 Students self-guided exploration of the OMM to explore HbA
ion in the	structure

• Guided activity with questions to explore HbS structure with occasional whole-class guidance by instructor

Future Directions for Molecular CaseNet

A Planned Searchable Web Repository

https://www.asbmb.org/education/teachingstrategies/foundationalconcepts/MacromolecularStructureFunction/ Next Generation Science Standard (NGSS) – 3D Learning. https://www.nextgenscience.org/three-dimensions