

Using a Molecular Case Study to integrate molecular structures into a Microbiology course

Saumya M. Sankaran
Sarah R. Alaei
University of Washington Tacoma

Introduction

- Molecular storytelling combines exploration of biomolecular structure and multidisciplinary functional information to build rich interdisciplinary learning opportunities in life science courses.
- We created a **molecular case study (MCS)** to help students connect and integrate important concepts in biochemistry and microbiology. The case study is focused on exploring the molecular mechanisms underlying antibiotic resistance. It examines the three-dimensional structures of penicillin binding protein (PBP) with and without the bound antibiotics and the functional consequences of mutations in the PBPs.
- This MCS aims to introduce students to various public scientific databases, molecular visualization tools available from the Protein Data Bank, and BLAST, in an exploratory, low-stakes, narrative-driven active learning opportunity.

Case Study Design

- **Guiding principles**: a topic that is current/relevant and illustrates a clear structure-function relationship underlying some phenotype of interest
- Broad topic choice: antibiotic resistance, a phenotype that can potentially result from small changes to protein structure
- We used the following case study design workflow:

Figure 1: Molecular case study design workflow.

- Choosing a specific example: We first developed an MCS focused on methicillin-resistant *Staphylococcus aureus* (MRSA), then a second version examining cephalosporin-resistant *Neisseria gonorrhoeae*.
- Round 1: In Autumn Quarter 2024, we implemented the MRSA version. The structure comparisons were not straightforward, and students seemed disengaged.
- We revised the case with an example that had more direct structure comparisons (thus creating the second version)
 AND more scaffolding with discussions/interpretations in class throughout the activity.
- Round 2: In Winter Quarter 2025, we implemented the drug-resistant *N. gonorrhoeae* version with better student engagement.

Why did we create this MCS?

GOAL: Create an interdisciplinary teaching module on a real-world relevant topic that connects a phenotype to its molecular structure-function basis.

Figure 2: Creating an interdisciplinary case study

How did we use the MCS?

- We implemented it as a **1-week module** in an upper division Microbiology course
- Class time: 2 x 2-hr lecture periods (+ preparatory readings)

Day 2	Follow Up
Part 2: The Function • Drug-protein interaction kinetics Link structure to kinetics to understand the structure-function relationship. Part 3: Connecting Sequence, Structure, and Function • Comparing gene sequences (BLAST) Tie together mutations in genes,	 Follow Up Complete case packet (with written responses and screenshots). On course assignment, answer questions relating structural changes to phenotypic consequence.
	Part 2: The Function • Drug-protein interaction kinetics Link structure to kinetics to understand the structure-function relationship. Part 3: Connecting Sequence, Structure, and Function • Comparing gene sequences (BLAST)

Figure 3: Steps in the implementation of the molecular case studies

How did students respond to the MCS?

Pre-/Post-activity surveys on content questions and perceptions of the activity

Figure 4: Comparing student perception between the two rounds of implementations.

- Perception of using case instructions to navigate Mol* (left) similar levels of comfort in both rounds.
- Comfort interpreting intermolecular interactions in structures visualized (right) improved in Round 2 cohort.

Lessons Learned

Student-centered design:

- Experience with implementing two versions of the MCS showed that students prefer a case where the phenotype-to-molecular-basis connection is clear.
- MCS design must ensure that the structural comparisons made to tell the molecular story are level-appropriate for students to grasp.
- The implementation should provide time to regroup/discuss understanding at key intervals during the activity to keep students engaged.

Faculty gains:

- This case type provides an opportunity for rich interdisciplinary collaboration between faculty from different disciplines to build a teaching module.
- Writing these case studies provides opportunities for **faculty development** in learning to use bioinformatics and molecular visualization tools.

Conclusions

- Molecular Case Studies can be incorporated into existing courses with minor adjustments to the course schedule.
- These case studies provide a change of pace and interdisciplinary connection as students are asked to tie phenotypes to their underlying molecular structurefunction basis.

Future Work

We plan to continue implementing this MCS to:

- Gather Pre- and Post- survey data from implementation of the revised case (drug-resistant gonorrhea) over 2 more quarters of Microbiology course (AY24-25 & 25-26) to assess learning gains in microbiology & interdisciplinary thinking.
- Propose collaborations to implement molecular cases in other courses for more interdisciplinary case exposure.

Acknowledgements

 Molecular CaseNet (funded by NSF grant DBI 1827011; DBI 2018884) and BioQuest Faculty Mentoring Network

References

- Dutta S et al. Learning Biology through Molecular Storytelling. Science Teacher. 2018;86(2).
- Goodsell DS et al. Molecular storytelling for online structural biology outreach and education. Struct Dynam. 2021;8(2). doi:10.1063/4.0000077
- Trujillo CM & Dutta S. Molecular storytelling: a conceptual framework for teaching and learning with molecular case studies. Front in Educ. 2024;9. doi:10.3389/feduc.2024.1379515

Molecular CaseNet website:

https://molecularcasenet.rcsb.org/